Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 666: 221-231, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598995

RESUMO

The direct and rapid conversion of abundant and cheap elemental sulfur into fluorescent sulfur quantum dots (SQDs) at room temperature is a critical and urgent challenge. Conventional synthesis methods require high temperatures, high pressures, or specific atmospheric conditions, making them complex and impractical for real applications. Herein, we propose a simple method for synthesizing SQDs simply by adding H2O2 to an elemental sulfur-ethylenediamine (S-EDA) solution at room temperature. Remarkably, within a mere 10 min, SQDs with a photoluminescence quantum yield of 23.6 % can be obtained without the need for additional steps. A comprehensive analysis of the mechanism has demonstrated that H2O2 is capable of converting Sx2- ions generated in the S-EDA solution into zero-valent sulfur atoms through oxidation. The obtained SQDs can be utilized as a fluorescent probe for detection of tetracycline (TC) and Ca2+ ions with the limit of detection (LOD) of 0.137 µM and 0.386 µM respectively. Moreover, we have developed a sensitive logic gate sensor based on SQDs, harnessing the activated cascade effect to create an intelligent probe for monitoring trace levels of TC and Ca2+ ions. This paper not only presents a viable approach for ultrafast and scalable synthesis of SQDs at room temperature, but also contributes to the efficient utilization of elemental sulfur resources.

2.
Adv Mater ; 36(7): e2306772, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37661841

RESUMO

The vector characteristics of light and the vectorial transformations during its transmission lay a foundation for polarized photodetection of objects, which broadens the applications of related detectors in complex environments. With the breakthrough of low-dimensional materials (LDMs) in optics and electronics over the past few years, the combination of these novel LDMs and traditional working modes is expected to bring new development opportunities in this field. Here, the state-of-the-art progress of LDMs, as polarization-sensitive components in polarized photodetection and even the imaging, is the main focus, with emphasis on the relationship between traditional working principle of polarized photodetectors (PPs) and photoresponse mechanisms of LDMs. Particularly, from the view of constitutive equations, the existing works are reorganized, reclassified, and reviewed. Perspectives on the opportunities and challenges are also discussed. It is hoped that this work can provide a more general overview in the use of LDMs in this field, sorting out the way of related devices for "more than Moore" or even the "beyond Moore" research.

3.
Mater Horiz ; 10(3): 722-744, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36562255

RESUMO

As a combination concept of a 2D material and a superlattice, two-dimensional superlattices (2DSs) have attracted increasing attention recently. The natural advantages of 2D materials in their properties, dimension, diversity and compatibility, and their gradually improved technologies for preparation and device fabrication serve as solid foundations for the development of 2DSs. Compared with the existing 2D materials and even their heterostructures, 2DSs relate to more materials and elaborate architectures, leading to novel systems with more degrees of freedom to modulate material properties at the nanoscale. Here, three typical types of 2DSs, including the component, strain-induced and moiré superlattices, are reviewed. The preparation methods, properties and state-of-the-art applications of each type are summarized. An outlook of the challenges and future developments is also presented. We hope that this work can provide a reference for the development of 2DS-related research.

4.
ACS Appl Mater Interfaces ; 12(16): 18870-18876, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32174108

RESUMO

Carrier-exciton interactions in two-dimensional transition metal dichalcogenides (TMDs) is one of the crucial elements for limiting the performance of their optoelectronic devices. Here, we have experimentally studied the carrier-exciton interactions in a monolayer MoS2-based two-terminal device. Such two-terminal device without a gate electrode is generally considered as invalid to modulate the carrier concentration in active materials, while the photoluminescence peak exhibits a red shift and decay with increasing applied voltages. Time-resolved photoluminescence spectroscopy and photoluminescence multipeak fittings verify that such changes of photoluminescence peaks result from enhanced carrier-exciton interactions with increasing electron concentration induce the charged exciton increasing. To characterize the level of the carrier-exciton interactions, a quantitative relationship between the Raman shift of out-of-plane mode and changes in electron concentration has been established using the mass action model. This work provides an appropriate supplement for understanding the carrier-exciton interactions in TMD-based two-terminal optoelectronic devices.

5.
Nanoscale ; 11(14): 6544-6551, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30916069

RESUMO

In this work, novel 2D/0D hybrid heterostructures with facilely adjustable fluorescence intensity and carrier concentration are achieved by decorating monolayer MoS2 (1L-MoS2) flakes with semiconductor-dots (carbon-dots or ZnO-dots). By carbon-dot decoration, the fluorescence intensity of 1L-MoS2 is significantly suppressed due to the n-type doping effect of electron transfer from carbon-dots to 1L-MoS2. In contrast, 1L-MoS2 decorated with ZnO-dots exhibits remarkably enhanced photoluminescence, because of the effective p-type doping modulation of electron transfer from 1L-MoS2 to ZnO-dots. The different charge transfer directions lie in the distinct energy band alignment of the two heterostructures. Raman, time-resolved photoluminescence and X-ray photoelectron spectroscopy studies prove the effective charge transfer between 1L-MoS2 and carbon-dots/ZnO-dots. Semi-quantitative estimations based on a mass-action-model demonstrate that the electron concentration in 1L-MoS2 can be controllably tuned from 1012 to 1014 cm-2via the p-type/n-type doping effect of these hybrid heterostructures.

6.
Chem Asian J ; 9(5): 1356-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24596341

RESUMO

Copolymers of 2-ethylhexyl acrylate (EHA) and cholesteryloxycarbonyl-2-hydroxymethacrylate (CEM) were prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Supramolecular complexes of these copolymers with carbon nanotubes (CNTs) were soluble in THF, toluene, and isooctane. The colloidal solutions remained stable for months without aggregation. The rationale for the choice of CEM was based on the high adsorption energy of cholesterol on the CNT surface, as computed by DFT calculations. Adsorption isotherms were experimentally measured for copolymers of various architectures (statistical, diblock, and star copolymers), thereby demonstrating that 2-5 cholesterol groups were adsorbed per polymer chain. Once the supramolecular complex had dried, the CNTs could be easily resolubilized in isooctane without the need for high-power sonication and in the absence of added polymer. Analysis by atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicated that the CNTs were devoid of bundles. The supramolecular complexes could also be employed in an inverse emulsion polymerization of 2-hydroxyethylmethacrylate (HEMA) in isooctane and dodecane, thereby leading to the formation of a continuous polymeric sheath around the CNTs. Thus, this technique leads to the formation of very stable dispersions in non-polar organic solvents, without altering the fundamental properties of the CNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...